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1. INTRODUCTION

The recent progress in the study of the low dimensional field theories and the matrix
models ! showed a number of remarkable connections between the two-dimensional quan-
tum gravity, low dimensional string theories, hierarchies of integrable diﬂ"erentiAal equations,
matrix models, Liouville model and loop equations. In particular it was found that the
study of the two dimensional quantum gravity is closely connected with the investigation
of the topological field theories. The topological field theories were first introduced by
Witten 2. The topological field theories that play the crucial role in the study of the low
dimensional string theories and matrix models are the so called topological conformal field
theories introduced in refs. 345 . These models can be coupled to the topological gravity
6,7, The connection between the topological field theories and the matrix models was first

noticed in refs. 8% and investigated in detailes in the subsequent papers 10:11,12,13

It was found recently that these topological field theories are closely related to the
singularity theory 11:12:14  The origin of this connection is the relation between the N=2
superconformal field theories and the singularity theory (see e.g. refs. 15,16 ). This relation
is based on the identification of the N=2 superconformal models as the fixed points of the

Landau-Ginsburg field theories.

In particular the approach based on the singularity theory was applied in refs. 1112
to the study of the minimal topological models at genus zero. It was shown that the
physical amplitudes in the minimal topological conformal theories coupled to the two
dimensional topological gravity 57 are the same as in the matrix models. Using the
recursion relations 894 3] physical amplitudes in the minimal topological field theory
coupled to gravity can be expressed through the ampitudes in the genus zero minimal
topological field thery. Moreover, it was noted in ref. 2 the that in order to find the
physical amplitudes in the topological field theory coupled to gravity it is enough to find the
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three and two point ampifudes in the topological field theory before its coupling to gravity.
The reason is that these couplings are not altered by the inclusion of gravity. Consequently,
all physical amplitudes in the two dimensional topological field theory coupled to two
dimensional topological gravity can be determined if we calculate the physical amplitudes

in the topological field theory before its coupling to gravity.

All these results show that the study of the topological conformal field theories plays

the key role in the understanding of the two dimensional gravity coupled to matter.

Up to now the investigation of the topological conformal theories concentrated mostly
on the case of the minimal models. Some results concerning topological conformal theories
including the models with the central charge ¢ > 3 were obtained in ref. !4 where the

connection between the topological field theories and the singularity theory was studied.

The purpose of the present paper is to clarify further the connection between the
topological field theories and the singularity theory. We will show that the problem of
the determination of the physical amplitudes (i.e. the correlation functions of the scaling
operators) in the general topological conformal field theories is equivalent to the well
studied problem in the singularity theory. This problem is the problem of finding the so
called flat coordinates. In turn, the latter problem is closely connected with the study
of the Gauss-Manin systems. These systems are the systems of the differential equations
for the integrals of the basic differential forms over the vanishing cycles associated with a

given singularity 17,18,19,20,21,22,23,24,25,26,27

We show that the approach based on the study of the Gauss-Manin differential systems
permits the simple determination of all physical amplitudes in the minimal topological
models at genus zero. In particular the problem of finding the physical amplitudes reduces
to the problem of transforming the system of Gauss-Manin differential equations into the
simple form. We include the case of the F7 and Eg models that were not considered
before in the study of the topological conformal field theorées. Note that although the
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physical ampitudes for the E7 and Eg cases were not considered yet, the corresponding
mathematical problem of finding the flat coordinates was solved by mathematicians long

ago 2428,

The singularity theory gives the unified picture for the structure of the generic topolog-
ical conformal field theories, including those with the central charge bigger than one. Con-
sequently, it gives the way to study the topological matter coupled to topological gravity.
It seems that in the case of the general topological conformal field theory the Gauss-Manin
differential equations play the role analogous to the role of the KDV hierarchy in the case

of the minimal models.

The paper is organised in the following way. In section 2 we briefly review the basic
definitions of the topological conformal field theory. We also review the coupling of the two
dimensional topological field theories to the two dimensional topological gravity. In section
3 we discuss some basic definitions of the singularity theory and their connection with the
topological conformal field theories. We review the notion of the flat coordinates and
discuss how they can be used to calculate physical amplitudes in the general topological
conformal field theories and the partition function in the topological field theory coupled
to the topological gravity. Knowledge of the latter function permits one to calculate all
physical ampitudes in the topological field theory coupled to gravity at least for the genus
zero case. In section 4 we write the answers for the case of the minimal models including

E; and Ejg theories. Section 5 is the summary.

2. TOPOLOGICAL CONFORMAL FIELD THEORIES

In this section we briefly review the basic formalism of the topological field theories

2,3,4,5,8,9,10,11,12,13,6,7,14



We first recall the definition of the two-dimensional topological theories 2. The main

feature of the topological conformal theories is that they posess the nilpotent Q-symmetry:

Q=0 (1)
The operator Q acts on the space of all states of the topological field theory.

The physical states in the topological field theory are characterised by the cohomology
of the operator Q. The space H of the physical states is equal to

H— KerQ

=g (2)

In other words, the local observables are defined by the relation:
Qlgi >=0. C
Also
6 >= id; > +Q|A > . (4)

The latter equation means that the correlators of the physical operators are independent

of the representative of ¢,.

The crucial property of the topological field theories is that the energy-momentum

tensor is the commutator of Q with some other operator G,g
Taﬁ = {Q=Ga6}° (5)
Consequently, the correlation functions of the physical operators are independent on the

coordinates of the operator insertions.

The next important property of the topological field theories is the factorisation prop-
erty. The correlation functions can be factorised by inserting the complete set of states in
the intermediate channels. This property amounts to the equation:

1phys == Z |¢z > 77” < ¢J|s (6)
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where 1/ is the metric on H. This metric is the inverse of the metric 7;; defined as
< 9i9; >= n4j. (7)

The class of the two dimensional topological field theories that play the special role
in the study of the two dimensional gravity are the perturbed topological coﬁformal field
theories. First, let us define the topological conformal field theories. These are the topo-
logical field theories that are also conformally invariant, i.e. the energy-momentum tensor
is traceless:

TS = 0. (8)

The combined presence of conformal invariance and the topological symmetry implies that
the generator Q can be decomposed into holomorhic ( left) and the antiholomorphic (right)
components that are dependent only on z and 2 . The way to obtain the topological con-
formal field theory is to start with the N=2 superconformal model with the central charge
c. The topological conformal field theories are obtained from the N=2 superconformal
theories by twisting the energy-momentum tensor in the way that the twisted energy-

momentum tensor has the central charge equal to zero.
T'(2) = T(2) + 1/28,J (2). (9)

Here T'(2) is the energy-momentum tensor of the topological conformal field theory, T(z)
is the energy-momentum tensor of the original N=2 superconformal model and J(z) is the

U(1) current.

In addition to the nilpotent Q-symmetry the topological conformal field theories con-
tain also the following holomorphic fields: the fermionic spin-2 field G and the U(1)-current
J. These fields are the Q-partners of the energy-momentum tensor T. These fields are re-

lated by the following equations:
T ={Q,G},

Q= W[Q:J]
6
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and
[Lm: Ln] = ( - n)Lm+n, [Jma Jn] dm&m+n 0>

[Lm, Gr) = (m — n)Grmin, [Jm, Grl = —Gmin,
[Lm, Qn] = =1Qmn, [Jm, Qn| = Qmin, : (11)
{GmsQn} = L + ndmn + pdm(m + 1 mp,
[Lmsjn] = —nJmtn — %dm(m + 1)‘5m+n,0
The parameter d is equal to ¢/3 and is identified with the target-space dimension. The

currents G and Q are the modifications of the supercurrents Gt and G~ of the N=2 algebra

of the original superconformal model. They have the Loran expansions of the form:

Z Lpz""2; G(z) = Z Grz™ "2,
2) = Z Jnz”" Q(2) = Z Qrz™" 1,

(12)

The primary operators in the topological conformal field theory correspond to the
cohomology of Q defined by egs. (3), (4} . These states are in one to one correspondence

with the states in the chiral ring of the original N=2 superconformal model.

In order to specify uniquely the primary fields we must specify the additional con-

straints, e.g.:

Gold; >= Lo|¢; >=0. (13)

These are precisely the conditions that define the chiral primary fields in the N=2 super-
conformal theories. These primary fields have the zero dimension relative to the energy

momentum tensor (9).

Each primary field has the U(1) charge:

Jol¢i >=qilo; >, 0< ¢ <d. (14)

The U(1) charge is the conserved quantum number.
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Consider now the family of the topological field theories defined by the parameter

family of actions
n=gy
S(t) = S(©O) + Y tn/% (15)
n=1
Here we introduced the coupling constants t, for each scaling operator. Note that the
operators ¢; do not depend on the variables ¢;. The family of TCFT (15) corresponds to the
versal deformation in the singularity theory and ¢; are the parameters of this deformation.
These topological field theories are called the perturbed topological conformal field theories
12 For shortness we shall usually omit the word ”perturbed” in the future. The point

(t1,..»tu) = (0,...,0) on the space of couplings corresponds to the unperturbed theory.

The main objects of interest in the topological conformal field theory are the functions

F, nij, ¢;j1- The function F is defined as

F(ty, ... tp) =< ezp(Ztkf¢k) > . (16)

The function 7;; is the metric on the space of the couplings ¢;:

ni;(t) =< ¢i¢je$P(Ztk/¢k) > . (17)

The functions ¢;;; are the three-point correlation functions:

Cijk(t) =< ¢i¢j¢’kexp(z tn/¢n) > (18)

Here the mean values denoted by the brackets < > are calculated using the unperturbed
action §(0). All physical amplitudes of the theory can be expresed through the three-point

correlation functions and the metric 5;;.

Three objects F, n;; and c¢;; are connected by the differentiation over the coupling

constants:
nij(t) = 3.,;33'311‘_',
(19)
¢ijk = 0;0;04F.
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The many point correlation functions can be obtained either by the many time differ-
entiation of F or can be expresed through 7;; and ¢;;; using the factorisation properties

of the correlation functions in the topological field theories (6) as e.g.:

< $ibj PPy >= Z €i7 Cmkly

e

< $idjdrdi [ $n >= D (Onclemit + i Oncmil)-

m

(20)

These results hold for the arbitrary topological conformal field theories. The indices
in c;'- & are raised and lowered using the metric 7;;. Also, it follows from the U(1) charge

conservation law that this metric is antidiagonal, that is n;; = 0 if ¢; + ¢; # d.

Let us consider the correlation function

< $iy i, f d2¢;,, ... f d?2;,,, > . (21)

Here the integration goes over the whole complex plane. Only correlation functions that

satisfy the U(1)-charge conservation law are nonzero:

j=r+s

Z q; + Z —1)=d. (22)

je=s+1

It is possible to prove using the Ward identities associated with the current G that the

metric n;; is constant 11,12

aknij = Q. (23)

The scaling properties of the perturbed correlators lead to the following equation for F:
> (g5 — 1)t;8;F(t) = (d — 3)F () - (23)
J
that is F(ty,...,t;) is a quasihomogenius polynomial of the degree d-3 with the weights
. qj — 1.
The coordinates ¢; form a distinguished basis in the space of couplings. They cor-

respond to the directions in the space of all TCFT that are the pertubations by the
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scaling operators. However, we can take the arbitrary directions 81y -y Sp, Where s; =
8;5{t1y--stpu); 55(0) = 0,7 = 1,.., 1, on the coupling space. In this case we must change
in the egs. (19) the operation of the differentiation by the operation of the covariant dif-
ferentiation defined by the metric 7;;. The three objects F, nij and ¢;;p in the arbitrary

smooth coordinates on the coupling space are connected by the operation of the covariant

differentiation over the coupling constants:

nij = V;V; V1 F,

(24)
Here V; is the covariant derivative operator respective to the metric nij:
Vid; = 9;4; + Tk 44, (25)
where
; Opr, . Onp;  Onjk
iy = nin( T2k 4 Ooi O (26)

So far we discussed only the perturbed topological conformal field theories that were
not coupled to the topological gravity. We shall not discuss the coupling to gravity here
in detailes (see e.g. ref. 12). We only note that the complete set of the BRST invariant

operators in the coupled system is given by
Ono = ¢a73P- (27)

Here P is the puncture operator, ¢, is the chiral primary field from the matter sector and

7o is the basic BRST invariant operator from the ghost sector.

The important property of the correlation functions in the toplogical theory coupled
to gravity is the independence of the three point functions from the coupling to gravity.

Namely,
< 00,600,300,y >=< badgdy >,
(28)
< Pog,a0gg >=< dpadg > .
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The Lh.s. of egs. (28) is calculated in the presence of the two-dimensional topological

gravity, while the r.h.s. is calculated in the topological theory before switching the gravity.

The function F in eq. (16} is the partition function of the topological field theory
coupled to gravity 12 Al physical amplitudes in the topological theory coupled to gravity,
at least for genus zero, can be determined if we know the partition function F. The ampli-
tudes with oy, o, n > 0, can be expressed through the amplitudes with g, that figure in
eq. (28) using the recursion relations 12 These recursion relations do not depend on the

central charge d of the topological field theory and we shall not write them here explicitly.

We see that in order to solve (i.e. to determine all physical amplitudes) the topological
field theory coupled to gravity at genus zero it is enough to determine the three and two
point correlation functions in the toplogical theory before coupling if to gravity. Integrating

these correlation functions three times we get F (see eq. (19)).

We shall now discuss the relation between these correlation functions and the singular-
ity theory 14 Denote by w(z1, ..., Zn) the relevant Landau-Ginsburg potential. The fixed
point of this Ginsburg-Landau potential is identified with the N==2 superconformal model.
The latter superconformal model originates the topological conformal field theory that we
are studing. According to ref.1® the potential w is the quasihomogenius polinomial. It is
possible to introduce the weights of the variables z1,...,zn in the way such that w(z) is
the quasihomogenius polynomial of degree one. Next we consider he polynomial W (z, s)
that is the minimal versal deformation of the polinomial w(z) = W(zy,...,25;0,...,0). This
polinomial is the Landau-Ginsburg potential that corresponds to the perturbed topological

field theory that we are studing. It has the form

W(z1, .y Tn; 51,5...8u) = w(z) + Zsj-qu(:c). (29)

Here s; are some coordinates on the coupling space. and the polinomials ¢;(z) form the

basis of the local algebra of the corresponding singularity.
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Let us define the coefficients c;.k by the equations:

oW oW

, OW
35, 09~ 2k as; ™o (Oahen 00, ). (30
7 . 2

These coefficients form the associative algebra. Remark that ¢;(z) = %aﬂ

Let us define the tensors ;;(s),c;jx(s) by the equations

?:9;

L= _—tr 31
T W0, W (31)

;0 Pk
Cijk = TBSW. (32)

Here the function res v (z, s) is defined as the integral
res(d) 2/ &z, s)dzy...dzy, : (33)
A(s)

where A(s) = {(z1,...,z5) : |6szV|2 = €,k = 1,...,n} and € are arbitrary small numbers
17 It is easy to see that the tensors c;k, Cijk» Mij from eqs. (31), (32}, (30) are connected

by the relation ¢;;; = nipc? B

The remarkable fact is 14 that the tensors Mijs €ijk> defined by eqgs. (31}, (32), coincide

with the tensors #;;, ¢;;;, defined by eqs. (17), (18).

This statement forms the bridge between the singularity theory and the topological
conformal field theories. The physically rigorous proof of the statement is based on the
evaluation the functional integral < [] ¢;(z)ezp(—S) > where S is the action of the topo-
logical field theory by the stationary phase method. The key step is to note that the latter
functional integral is explicitly saturated by the trajectories in the space of fields z;(z)
that are independent of z, i.e. it is equal to the finite dimensional integral over z;. The

explicit calculation gives egs. (31) , (32) .

The metric (31} is nondegenerated and this is the standard fact 17,29, Suiprisingly,
this metric has the zero curvature 2122, Hence there are canonical coordinates in which
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this metric is constant. (These coordinates are defined up to the linear transformation
with the constant coefficients). There are two proofs of this fact. One is the mathematical
proof 2122 | The second is the physicaly rigorous proof based on Ward identities of the
topological field theory 1112 and the identification of the metrics given by egs. (17) and
(31) . The physical proof gives the additional information. Namely in the coordinates,
such that #;; is constant, the functions ¢;;; are the third derivatives of the function F (see
eq. (19)), having the physical meaning of the partition function of the topological matter
coupled to the two-dimensional topological gravity. This fact is apparently not known in
the singularity theory. It would be interesting to determine the meaning of this function

in the singularity theory.

The coordinates in which the metric #;; is constant are defined up to a linear trans-

formation with the constant coefficients. We call these coordinates the flat coordinates.

It is clear that the problems of the determination of the three point correlation functions
and the partition function F for the given model are solved once we know the flat coordi-
nates. Indeed, once we know the expression of the Landau-Ginsburg potential W (z, s(t))
in the flat coordinates ¢;,7 = 1,..., 4, we can find all amplitudes using eqs. ( ;;2.13;j} and
(30). The covariant derivatives in these coordinates are the usual ones. Consequently, F
is determined by the direct integration of the three point couplings. The problem of solv-
ing the topological conformal field theory (and also two dimensional topological gravity

theory) is the problem of how to find these flat coordinates.

3. THE FLAT COORDINATES AND
THE GAUSS-MANIN EQUATIONS.

In this section we shall discuss the methods of the determination of the flat coordinates
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in the singularity theory.

This problem is connected with the theory of Gauss-Manin differential systems.

3.1. THE GAUSS-MANIN EQUATIONS.

Let s1 be the coefficient in the superpotential (29) at the term that corresponds to the
unit operator that is let ¢; = 1. Let s’ = (so, s $y) and s = (s',51). We define 65‘[, as

I'(A+1)
271

Siyr = (-w)~L (34)

Denote by M{}V the free R(z,s' ) module with the basis (ééé—k))kez :

My = P R(z, )07 (35)
keZ

Here R(x, s') is the ring of all polynomials in (1, - Tn; 8500y 8y
Define the operators Dy, sy, Ds;, Dz; by the following formulae 27,30,28,
Ds, 85 = 63,
s160 = —(W — s1)8%y — 26,
(36)
Dy, 89y = 85, (W),
Dg.6) = 35, (W),
Under these operations M{,\V becomes the left D(z, s) [Ds_ll] module generated by the symbol
6%,-. Here D(z,s) is the algebra of all differential operators with the polynomial coefficients
in (z1,...,Zn} s).
The Gauss-Manin system is the system of equations on the integrals of the holomorphic
differential forms over the vanishing cycles of the singularity. It is verified by the integrals

of the form

u(s) = [r(s) Pz, )W ldz  (dz =dzy A .o A dzy). (37)
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Here ¢(z,s) is a function, ¥(s) C {(z1,...,zn)|W (z,s) # 0} is any locally constant family
of the n-dimensional cycles, lying in the neighbourhood of the point (z = 0,5 = 0). These

cycles are called vanishing cycles (see ref. 17].

Recall that ¢;(z) are the generators of the chiral ring associated with the given singu-

larity. Let

w; = ¢;dzy A .... A dzp. (38)

Define

where 6y is given by eq. (34) . Let @ = (2, ...u,). The Gauss-Manin system has the form

811}: = A(S’,Dsl)a"

(40)
D, Ds—llﬁ: = B(k)(slv Dy, )u.
Below we consider the case when A is zero.
The matrices A and B) in eq. (40) can be represented as the Loran series:
A= Z Ak 31 ’
(41)

B — Z B(k) D_:..
={}
The matrices 4 and B¥ in eq. (3.10) can be easily computed (see e.g. 28 ). Let w be
any n-form. Then there exist the polinomials ay, ...,ay in D(s') such that

/w&{}v a,,wz D“lftSWé (42)

1=1

Here £ = —dn, where the form 7 is the (n-1)-form defined by the equation

v
w =Za,;wi+dW/\n. (43)

i=1
We can repeat the above calculation for the form £, obtaining for the integrals of this form
over the vanishing cycles the expansion of the type (42) .
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The equation (43) gives the simple algorithm for calculating the matrices A; and ng).
Let 6 = (41,...,4). Then
~Weé= A()(,; mod (05, W),
g (k) 7 (44)
95;(W)¢p = B;"'¢ mod(3,W)
Note that the matrix Ag defines the equation of the discriminant of the singularity 30. The

equation of the discriminant is
det(s1I — Ag(s')) = 0. (45)

In order to find the matrix A; we must find the expansion:

Wi => (Ag)indr + > Bydz, W. (46)
k k

The matrix A is defined from the equation

9B,
Z k ZA1)13¢3 mod &g, W. (47)

6:ck

Continuing this procedure we can find all the matrices 4; and BEk) Note that in the case
of the minimal models there are at most two terms in the expansion (41). In the case of

the models with d=1 there are at most 3 terms in these expansions.

It may be possible that the Gauss-Manin equations can be interpreted as the ” Fourie-
images” of the Ward identities. The functions u; can be considered as the ” Fourie-images”

of the primary fields ¢; of the chiral algebra.
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3.2. HIGHER RESIDUE PAIRINGS

The theory of the Gauss-Manin systems is closely connected to the theory of the
primitive forms. In order to define the primitive forms we need the notion of the so called
higher residue pairings 26:30:31, The higher residue pairing puts into the correspondence to
every two differential forms w = ¢(x, s)dz;...dz,, w' = ¢'(z,s)dz;...dz, and the function
W(z,s} the sequence of functions K (k)(w,w') dependent on s'. In this process we first
build from the function W and the differential form w the sequence of functions V(k)(w)
dependent on variables (z,s). Next we put K(¥)(w,w') = Res(V¥(w)¢'). Namely, the
higher residue pairings are defined in the following way. Consider the finite open covering
of the space with the coordinates (zi,...,Zn;s) by the sets U = {U;}; i=1,..,N. Here
U; denotes the set {(zi,s);%—‘: # 0}. Let us denote by QP'7 the following linear space.
The elements‘ of @P? are the sets of holomorphic q-forms. Namely, w € @79 is the set of

holomorphic g-forms w¥(U;, N...NU; . ) defined on each of the spaces U; N ...NU;

p+1 p+1°

w = {wi(U; n..NU; )} The elements of QP2 are called p-chains (see ref. 32 for the

Ip+1
detailes). For example the elements of Q%9 are the sets of holomorphic g-forms defined
on each of the sets Uj; w € Q" = {wI(U;);i = 1,...,N}. The elements of the space
QL2 are the sets of g-forms defined on each of the sets U; N U;, etc . We now define
the coboundary operator 3. The Chech coboundary operator acts as 9 : QP-le — Qra

~

: wq(Ui1°-°Uip+1) = E(ml)"wq(Uil n...U;..n0U;

ips) Here the sign U/ means that this

particular set is omitted. This operator maps p-1-chains into p-chains. We now define the

space SP9

579 = QP @ (1577 (48)
17



Here 6y is the formal parameter. The element of this space is the formal series
=0

L= )" w;t (49)

i=—o0

here w; belong to the spaces QP9 that were defined above. The coboundary operator 3

acts as SP9 — SPtLe on this complex. Define the cohomology operator d:
7 -1

The cohomology operator d acts as QP9 — QP We can now define the double complex
as the triple (SP4, 8, ci) For every n-form w we construct the element of %™ by restricting
this form on each of the sets of the covering. According to Saito there exists the function
Lc §(m9) that is equal to

~ -~

L=d Yad 1) uw. ‘ (51)

We now define 26:30:31 the functions V(*)(w) as the coefficients in the formal expansion

L= i V) (w)657%. (52)
k=0

We define the higher residue pairings as the bilinear forms:
K& (w,w") = Res[(VFw)4). (53)

For example, then

¢'¢

(0) Ag. SN 4 S
K w,w') = Resg<—5—p

n ¢ .1 a¢' (54)
(1) f — m:.qs ¢ i
K\ w,w)=1/2 E Resa:c1 (OaWT...00,

and so on. Note that K(0) is just the metric n;; defined above.

We conclude that the metric #;; is included into the infinite series of the bilinear forms.
. It would be interesting to check whether K{?) have any connection with the higher genus
corrections for the metric on the space of all couplings ( see e.g. refs. 1,33,12 for the
discussion of the higher genus corrections to the correlation functions).
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3.3. GAUSS-MANIN SYSTEMS AND FLAT COORDINATES

We now consider the connection between the Gauss-Manin systems and flat coordinates
21,22, According to refs. 2122 the flat coordinates can be found in two steps. First, we
go from the basis (uq,...,#,) in Gauss-Manin equations to the basis (vi,...,v,) in which
the Gauss-Manin equations have the simple form (see below). Second, we look for the

coordinates (t1,...,¢,) on the coupling space for which v; = | aﬂ(‘%’_ﬂmé(W)d:cl A..Adzy.

It appears that such coordinates are flat 21,22,

In more details, it was proved in 21,22 that there exist a special basis on the space of

differential forms ¥ in which the Gauss-Manin system acquires the following simple form

s17 = (Ao(¢') + A1(s") D3 1)7,
(53)
D,, D; ' = B(s))g.
Here A; is the diagonal matrix whose elements are the U(1} charges of the basic chiral

fields ¢; and Ay is nilpotent. For this basis the higher residue pairings defined in the

previous section are zero:
K9 (v;,v,) =0, 1>1 (56)
and the metric # is constant: n;; = K(O)(vi,vj) =const.

The basis that we are looking for is connected to the basis # in which we wrote the

eqs. {41) by the transformation:
@ =5(s', D;1)7. (57)

Here the matrix S is the holomorphic function of its variables. In order to find S we must
make the Fourie transformation over the variable s; in eqs. {3.16). We denote the Fourie

" image of s1 as x and the Fourie images of @ as F and of ¢ as G:

F = SG. (58)
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We shall denote the Fourie image of the matrix S also as S. The connection (55) acquires
the following form after the Fourie transformation:

DyF = MF = (My/z* + My /z + My + ... F,

o . . . . (59)
DyF = NOF = (N0 )z + N + N9z 1 )F.
The Fourie image of the matrix S transforms the connection (59) into the form
DG = M'G = (My/=® + My /)G,
(60)

Dy F = NG = (N /)@,
Here the matrices M,;,Mi, N;, Ng are independent of x. Under the change of the basis

given by eq. (58) the system (59) transforms as
M =571Ms + 519,85 (61)

or equivalently

SM' = MS + 3,5. (62)

The analogous transformation can be written for the matrix N. The eq. (62) gives the

system of recurrence relations for the coefficients in the expansion:

S=Y S (63)

Hence we can determine the matrix S. In general there is an infinite number of terms in

the r.h.s. part of eq. (63) .

Once we determine the matrix S we can find the basis v for which egs. (59) are valid.
In the same way we can determine the matrix $~!. Once we know S—! we can find the

set of forms e; such that

v = / e:6(W)dz (64)
Next we use the fact that Ds_lku can be expressed as the linear combination } F;(s;, s1)u;,
where u; are integrals of the differential forms that form the basis in the local algebra (chiral

ring) of the singularity. Hence there exist the matrix Q{sy, ..., sy) such that ¥ = Q4.
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It was noted in 22 that there exist the coordinates on the space of the parameters of

the versal deformation such that
aw

Bti = €;. (65)

Moreover, this coordinate system is flat. We see that in order to find the flat coordinates
we must find the ccoordinates ¢; that put the Gauss-Manin system associated with the
given singularity into the simple form (55). In order to achieve this goal we have to solve
the egs. (60) and find the matrix S of the basis transformation. Next we have to find
the flat basis v; solving the eq. @ = Sv. Finally we find the flat coordinates using eq.
(65). Constructively, this method permits the simple determination of flat coordinates if
S is a finite polynomial in D_,__ll. This is the case of the minimal models as we shall see
later. In general however, starting from the d=1 case S is the infinite series in Ds—ll and
this procedure gives only the way to find the series expansions of the flat coordinates and

permit the one to prove their existence.

3.4. PRIMITIVE FORMS

Let us denote by T the space of all vector field in variables s'. The primitive form 21,30

is the form for which the following axioms are fulfilled:
1)KD(velD,veN) =0,
2) Ve = (r — 1)l
(66)
KM (VsVee 2, Vet =0 k>2v66.6 €T,
QKB (5;V560D Voel-Dy =0 k>2v6,4.
(0) imiti - glk) = (o) e(0) i
Here £\V/ is the primitive form; £ = (v 5 J€W). The symbol v denotes the Gauss
Manin connection (see refs. 1718:19 for the detailed definition; this connection must not
be mixed with the connection V associated with the metrié (17)). The vector field E is

21



the Euler vector field. This is the field such that Vg + I acts as the U(1) current. The
number r is the sum of the U(1) charges of the fields z1,...,z». For simple singularities
W (z,s) = z# + .... we have €9 = 230, We can also consider the example of the simpie

elliptic singularities 21

yz? — z(z — y)(z — Ay) + .....,
zy(z — y)(z — dy) + 2 + ..., (67)
z(z — 'gz)(z; - Ayz) +22 4+ ..
etc. Here the sign ... means the terms corresponding to the minimal versal deformation.
Let w = dz A dy A dz. Then the primitive form is

€0 = /(e |

Y1

resgp(w) + d[ resp(w)). (68)

Yz
Here (c,d) # (0,0), +; are the basis of the horisontal family of the homology of the corre-
sponding elliptic curves E. For the detailed investigation of the definition and properties

of the primitive form see refs. 2122,

Let us define vy as the integral over the vanishing cycles of the monomial with the
minimal weight in the theory (that corresponds to the unit operator in the conformal field
theory language). Suppose ¢ is the integral of the primitive form E(O) over the vanishing

cycles.
e =it [ eDsw)dn (69)
It was proven in ref. 22 that

9;€ = v; (70)

We differentiate here in the flat coordinate basis. The basis ¥ is the basis in which the

Gauss Manin system has the simple form. This basis was defined in the last section.

Let us define the following differential form on the space of couplings:

z ow
w=>_ KOG, e0ds; (71)
i=1 *
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It turns out that w = dr and 7 is the flat coordinate at the operator that corresponds
to the operator with the highest U(1) charge. For example, for the case of the elliptic

singularities with d=1 the flat coordinate has the form 21

r=(arg +b)/(cro+d); a,b,c,d€ Ciad—b#0. (72)
T = f resp(w)/ | resp(w) 71,72 € Hi(E, Z). (73)
T 11
It is interesting to know whether the other flat coordinates satisfy the similar relations.

It is also worth mentioned that we can define the flat coordinates as the independent

26,

nonconstant solutions of the system of the differential equations

(86' — V56')t =0 6,6 € T. | (74)

3.5. FLAT COORDINATES AND MONODROMY GROUPS.

The problem of finding the flat coordinates arises in the singularity theory also from
the point of view of the problem of finding the special basis for the ring of the functions,
invariant under the monodromy group. This problem was considered for the case of the

simple singularities 23,24,25 414 for the case of the elliptic singularities 26

Let W be the finite group generated by reflections and acting on the p-dimensional
vector space V. This group acts on the space of polynomials S on the vector space. The
subring S" of the invariant polinomials is generated by u algebraically independent ho-
mogenius polynomials. Irreducible finite groups of reflections are classified by their types:
AF,D“,Eg,E';,Eg.... In the singularity theory the classification of the critical points of
functions also begins with the types Ay, Dy, Eg, E1, Eg.... In this situation the space Vv,
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the group W, the W-invariant scalar product I on the space V and the ring SV are iden-
tified with the following objects for the corresponding singularity. V is the space of the
vanishing homologies, 1 is the intersection form in homologies, W is the monodromy group
of the corresponding singularity, SW is the ring of the polynomials on the parameter space

of the minimal versal deformation (see ref. 17,

Let us define the operation of the contraction of the invariants

i
<dPdQ >= )

i,j:]_

dP 8Q
—r . -}, 7
" anI(X‘HX]) ( 5)

Here x; are the coordinates of V. This operation puts into correspondence to every two
W-invariant functions P and Q the W-invariant function < dP,dQ >. Let us define the
matrix function on the space of the parameters of the versal defo.rrnation < sz-,de >
where Py, ..., P, is the basis of the ring SW . Let P, be the element of the basis (P1,..., P)
that has the maximum power of the homogenuity. The authors of refs. 23,2425 proved the
existence of the basis such that the matrix 3—163; < dF;,dP; > is constant. Moreover this

basis is the flat coordinate basis in the sence discussed in the present paper.

The analogous investigation was made in the case of the elliptic singularities that
correspond to the case d=1 26, In this paper the polinomials (Py, ..., P,) are changed to

the theta functions.

We saw the direct connection between the theory of Gauss-Manin systems, K. and
M. Saito theory of the primitive form, monodromy groups and flat coordinates. This

connection works in the most effective way for the case of the minimal models.

It would be interesing to find whether the metric of contraction of the invariants given
by eq. (75) and the closely related to it symplectic structure on the space of couplings (see
e.g. ref, 17) are of any physical significance.
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4. MINIMAL MODELS.

In this section we shall explain how the technique discussed above works in the case
of the minimal models. In fact, all necessary calculations were really done by Japanese
mathematicians in refs. 23:24.25.28.32 g4 we’ll limit ourselves just by explainiﬁg the simple
technique connected with the Gauss-Manin systems and proposed in 28. As we shall see,
this technique gives the full solution of the minimal topological theories including the
previously unknown cases of E7 and Eg models. For the known case of the other minimal
models our results of course coincide with the results of refs. 11,12,

Let us explain the method 28, We consider the following series of singularities:

W=zt gy 274ty 4
W=z"111/22% +4;_3a" 3+ .. +1y: D
W=z*+y51 to + 81T + tgx? + 3y + tazy + tszly : Eq (76)
W =23y +y3 +tg + t1y + tgzy + t3zy’ + taz + tsx? + gy’ . By
W =1+ % +tg +t12 + toy + t32° + t42° + tyzy + tgzly + trzdy : By
Note now that in the case of the minimal models the matrices A, B() in the Gauss -Manin
system have the form
1
A= Z‘Ak(t)D()_ka
B® = %" ¥ (1) by,
1=0
Indeed, deg (We;) < 21. Hence deg By, <! and deg }, %%;’1 <1—1 (see eq. (47)). Hence,
according to the algorithm in sec. 3 A,-,Bﬁk) =0 for r > 2. (since ) %%f is the linear
combination of the basic monoms without the d;,W terms in the r.h.s.) If we substitute

the matrix S into such system we immmediately see that S = Sy, i.e. S is the independent

of Dy L. The matrix S satisfies the system of differential equations:
as

v _ plk)
5, = BIW. (78)
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The flat coordinates s; are the solution of the system of the differential equations

331'
— =55, 79

This system was solved in ref. 2% where the following result for the flat coordinates was

obtained:
tO!
sp=tobuo+ 3 AUCHES (80)
<o,a>=0,
The matrix S is diven by the following formula:
e
Si= Y. eli(e +3)—- (81)

<oOO>=0y-0;
The function ¢, is defined by the following set of equations:
1) Case of A;: Define L{u) = (€ Nsa=p(l+1) ={u+k(l + 1);k > 0},l

eu(e) = (~1)F (8L k) if « € L),

+

cu(a) = 0 otherwise.

o) = E:;__IO poy € N {N=0,1,...,1 — 1}. Here

o t‘fl...tZ’I‘gl (52)
a!  arleg gV
The symbol (z; k) denotes
(z;k) =z(z+1)...(z+ k- 1) (83)

2) Case of D;. Take N = {(1,0);0 < p <{—2}uU{0,1}.
L{g,0) = {(a1, ) E N a9 =0 mod 2,01 =p+ S mod (I-1)},
= {1 + (k1 (l — 1) + ka, 2k); kp > 0,k > —EFk2},
L(0,1) = {(a1,09) € N%; a9 = 1mod 2, a9 = 25t mod (I — 1),

= {(k1(l — 1) + ko, 2ko + 1); ko > 0, k1 > 722},
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cun(@) = (—1)erthr (b — ol k1) (1/2: k) if @ € L(1;0),

¢u,0() = O otherwise.

1k
cor(@) = L(Pk—:",rz' if « € L(0,1),k; <0,

co1 = 0. Here l{a) = (l1(e),la(a)), li(@) = 3. ,cy #iap. The function l{a) is defined

in the same way also for three other exeptional singularities.
3) Case of Eg. N = (u1,p2);01 =0,1; 42 = 0,1.
L(p1, p2) = {(o, 09) € N% 0y = py mod 4, = p1g mod 3},
= {(p1 + 4k, u2 + 3kg); k1, kg > 0},
cula) = (~1)krHha (B k) (B35 k) i € L(w),
¢u(@) = 0 otherwise.
4) Case of E7. N = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0)},
L(p1,u2) = {(e1,02) € N% 1 = py mod 3, ag = pg + (o — 1) /3 mod 3},
= {{p1 +'3k1, 19 + kg + k1); k1 > 0, kg > —(p2 + k1) /3,
cul0) = (—1)FrtRa ((Edy i) ) (g + 1) /3 — (w1 +1)/9 ko) ifa € L(u),
¢u(e) = 0 otherwise.
5) Case of Eg. N = {(u1,p2);41 =0,1,2,3;49 = 0,1},
L{p1,19) = {(a1; 02) € N%; a1 = u1 mod 5, ag = pg mod 3}.
= {(uy + 5ky, p3 + 3ko); k1, kg > O}.
cula) = (=1)*r+R2((ug + 1) /5; k1) (2 + 1) /3; k2) if @ € L(w),
= 0 otherwise.

In these formulae the mapping !{¢) from N ! to N2 is defined in the following way. Put

W(z,y) = Ztkmm(k)y#z(k)_ (84)
k
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We define
h(e) =) ogpuy(k), Iz(e) = > apua(k). (85)
k

The scalar product < ¢, a > is given by the sum > ;0i0;. Here

op=1- Zmui(k)- (86)

The parameters p; and py are the weights of the generators x and y of the polynomial

algebra (equal to the U(1) charges of the corresponding primary fields).

It is possible to check that in the cases of 4 us Dy, Eg singularities we obtain the results
of refs.)1:12_ We have also presented the explicit formula for the flat coordinates in the

cases of E7 and Eg models.

Once the flat coordinates are known we can use the egs. (30) in order to caiculate the
structure constants cj-k. The correlation functions ¢;;1 are obtained by raising and lowering
the index i using the flat metric whose entries are constants. The partition function
is obtained by the trivial three time integration of ¢ijk- Note that using the recursion
relations and the factorisation properties of the correlation functions it is straightforward
to calculate all other physical amplitudes of the model at all genuses once we know the

structure constants ¢;;; 4,5,8,9,10,11,12

5. CONCLUSION.

The important feature of the technique disussed above is that it is valid in the case
of the arbitrary topological field theories. Indeed, all theorems concerning the connection
between the topological conformal field theories and the singularity theory that were dis-
cussed in sec. 3, 4 are valid independently of the value of the central charge ¢. However,

while the existence of the flat coordinate basis is still garanteed, the real calculations in
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the case d > 1 become much more complicated. The reason is that the number of terms in
the presentation of the Gauss-Manin system in (41) can be now bigger than two. Hence
the coefficients S; in the matrix S of eq. (57) are not zero any longer for ¢ > 1. Instead
we have a set of the recursion relations that express them one through another. Hence,
the simple equations, like eq. (79), are not valid any more. For example, if we take the

potential

W=2+43+23+ to + t1z + oy + t3z + tazy + tsxz + tgay + trzy2, (87)

then for this potential the matrix Bén # 0. Hence we get the complicated set of recursion
relations and differential equations. Partial characterisation of the flat coordinates for the
d=1 theories in terms of the theta functions is discussed in ref.?8. Note also that strictly
speaking we consider only the small vicinity of zero for the space of the parameters of the

versal deformation. It is an open question (especially in the case d > 1} whether the theory

can be defined globally on the space of couplings.

We conclude that the singularity theory gives the way to solve explicitly all topological
conformal field theories at genus zero. The procedure is greatly simplified in the case of
the minimal models (see section 4). As a final result we can get the partition function F

of the topological matter coupled to the topological gravity.

We have seen the close connection between topological field theories and the theory of
Gauss-Manin systems. The latter is the theory of the integrals of the differential forms over
the vanishing cycles. It would be interesting to understand whether these Gauss-Manin
systems can be interpreted as the "fourie transformed” Ward identitities of the topological
field theory. At least in the mathematical proofs of the properties of the metric 7;; this
system seems to play the same role as the Ward identities in the physical proofs of the
properties of this metric in 1,12 1t would be also interesting to find the mathematical
meaning of the function F. It seems that this function was not considered yet in the
singularity theory.
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